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Abstract   

We describe a new robust solution for recovering the 
long-wavelength features of a velocity model in FWI. 
The method uses reflected and transmitted wave 
modes, i.e. the full wavefield, to recover high-
resolution velocity models. Our new FWI gradient 
enables reliable velocity updates deeper than the 
maximum penetration depth of diving waves, and 
reduces the FWI dependency on recording ultra-long 
offsets. 

We also discuss a new FWI regularization scheme 
that overcomes the limitations of the inversion in the 
presence of high contrast geobodies and cycle 
skipping. The implementation makes use of the split 
Bregman method making it efficient and accurate. 

Results from applying the new FWI gradient to field 
data show that we can combine both transmitted and 
reflected energy in a global FWI scheme to obtain 
high-resolution velocity models without imprint of the 
reflectivity on the velocity updates. 

 

Introduction 
Full Waveform Inversion (FWI) is now well established as 
a velocity estimation tool in the seismic industry. First 
introduced in the early 1980’s by Tarantola, we had to 
wait almost 30 years until the technology achieved 
widespread acceptance. As stated, FWI has in intuitive 
and simple objective; minimize data misfit. However, in 
practice, this is clearly a complex task that requires the 
use of forward modeling to generate data, optimization 
algorithms and regularization to help cope with the inherit 
non-linearity of the problem.  
The delay in uptake can maybe firstly be attributed to the, 
at the time, lack of cost effective compute solutions 
powerful enough to solve the many forward modeling and 
imaging iterations needed as part of the FWI 
implementation. Seismic acquisition equipment and 
templates from this era also posed challenges; offsets 
were limited or even short, and recording systems were 
often equipped with harsh low-cut filters effectively 
eliminating the low frequencies needed for FWI. It is 
important to keep in mind that the goal at the time was to 
acquire data for reflection seismology; so little focus was 
put on the ability to record refractions and diving waves. 

OBC and OBN data were used in some early applications 
FWI as they circumvent these issues by decoupling the 
sources and receivers, providing long offset, rich and 
even full azimuth coverage and more reliable recordings 
of the low frequencies. Lately, applications to streamer 
data have become more widespread as the availability of 
long offset data with good low frequency content has 
increased. This has help to truly establish FWI in the 
mainstream, in particular from a data volume perspective 
as 3D streamer seismic covers far more areas than nodes 
or OBC. Lately, use of multi vessel acquisition schemes 
that can acquire very long offsets have further progressed 
this, enabling streamer-based recording of the diving 
waves and refractions that are so important for achieving 
convergence in most FWI schemes. 
 
FWI inverts for the velocity model by solving a nonlinear 
inverse problem minimizing the difference between 
modeled data and recorded field data (Tarantola, 1984). 
A schematic illustration is shown in Figure 1. The 
matching is quantified by the residuals of a least-squares 
objective function, and the model update is computed as 
a scaled representation of its gradient. For most, if not all 
exploration seismic applications, FWI is an ill-posed 
problem due to the band-limited nature of the seismic 
data and the limitations of the acquisition geometries; we 
do not have access to the full wavefield. To mitigate this, 
typical FWI implementations involve iterative solution 
schemes with various forms of regularization applied to 
gradients and/or solutions. It is also common to approach 
FWI with a multi-scale approach, i.e. starting from low 
frequencies and adding higher frequencies to the problem 
as the recovered model improves. Provided the right data, 
FWI can produce high-resolution models of the 
subsurface when compared to ray-based methods.  

 
Figure 1. Conceptualized overview of the Full waveform 
inversion scheme 
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Method 
In conventional FWI, we solve a nonlinear inverse 
problem by iteratively updating the model to minimize an 
objective function, which is the difference between the 
modeled seismic data and the recorded field data. This 
misfit function is generally minimized in a least-squares 
sense, and the model update is computed as a scaled 
representation of its gradient.  In the case of an isotropic 
acoustic medium parameterized in terms of bulk-modulus 
and density (κ, ρ), Tarantola (1984) shows that the 
gradient depends on the kernels for κ and ρ that can be 
written as: 
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where )()()( 2 xxx vρκ =  is the equation that relates the 
bulk-modulus to velocity, ),( tS x  is the source wavefield 

and ),( tTR −x  is the residual wavefield after time 
reversal. Equations (1) and (2) are sensitivity kernel for 
the respective parameter, and measures the variation in 
the misfit function caused by change in that parameter 
while holding the others fixed. The sensitivity kernels 
corresponding to Equations (1) and (2) for a simple tow-
layer model are shown in Figures 1a and 1b. Note how 
the back-scattered energy in the kernels, or “rabbit ears”, 
changes polarity in the two images. This is a fact that was 
recognized in the work of Whitmore and Crawley (2012), 
where they introduced a new RTM imaging condition 
formed by the summation of two kernel components to 
suppress low-wavenumber imaging artifacts. For the RTM 
application the aim was to remove the low wavenumbers, 
so quite opposite of what we aim to do for FWI. Using the 
sensitivity kernels in Equations (1) and (2), we can 
express new kernels in terms of bulk modulus and density 
by simply forming linear combinations  
 
Kv (x) = KK (x)−Kρ (x)                (3)
KZ (x) = KK (x)+Kρ (x),            (4)

 

 
where the impedance kernel in Equation (4) can be 
recognized as the RTM imaging condition presented by 
Whitmore and Crawley (2012). The impedance kernel 
comprises the high wavenumber components of the 
velocity field while removing the unwanted backscattered 
noise. The examples presented in their paper, using 
heterogeneous models, highlighted the importance of 
dynamically weighting the different components of the 
impedance kernel to achieve optimal removal of the low 
wavenumber artifacts. Figure 1c shows the result of 
weighting the components from Figures 1a and 1b, to 
produce an RTM impulse response free of back-scattered 
noise.  

 
Figure 1. Sensitivity kernels of a source-receiver pair in a 
model with a homogeneous layer overlying a half-space: 
(a) bulk-modulus, (b) density, (c) impedance, and (d) 
velocity 
 
 
On the other hand, the velocity kernel given by Equation 
(3) is ideal for FWI where the low wavenumber 
components of the gradient are preferred. As we know, 
the high wavenumbers associated with reflections may 
mislead the inversion. Following the premises of 
Whitmore and Crawley (2012), an FWI gradient can be 
derived by dynamically weighting the velocity sensitivity 
kernel (Equation 3). Their dynamic weights can be 
adapted to alternatively remove the high wavenumbers 
from the FWI gradient in a heterogeneous media. The 
new FWI gradient derived from equation (3) is:  
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where the dynamic weights W1(x,t) and W2(x,t) are 
designed to optimally suppress the migration isochrones, 
and A(x) is the illumination term.  Figure 1d is produced 
using equation 5; it illustrates how the migration isochrone 
has been removed while the low wavenumber energy is 
preserved. 
 
 

 
Figure 2. Sensitivity kernels of a source-receiver pair in a 
model with a V(z) layer overlying a half-space: (a) 
conventional kernel and (b) dynamically weighted velocity 
kernel. 
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Figure 2a shows the conventional FWI gradient compared 
to the modified gradient from Equation 5 (Figure 2b) in a 
simple v(z) velocity model where velocity is linearly 
increasing with depth. Here, the modified gradient in 
Equation 5 removes the migration operator (isochrone), 
but preserves all the low wavenumber components 
associated with the diving waves (“bananas”) and 
backscattering (“rabbit ears”). To better illustrate the use 
of reflections in FWI we use a simple 2D synthetic 
example consisting of five homogeneous layers, as 
shown in Figure 3. The data has maximum offsets of 4 km 
so only pre-critical reflections are used in the inversion. 
The starting velocity model for FWI contained errors up to 
100m/s. The inversion was performed on a frequency 
band of 3-5 Hz. Figures 3b and 3c, show the results of the 
inversion using the conventional FWI gradient as 
compared to our new FWI gradient. Results from the new 
FWI gradient are accurate and do not suffer from the high 
wavenumber artifacts observed on the conventional FWI 
update, that is dominated by the reflections as would be 
observed in a migrated image. 
 

 
Figure 3. Five layer synthetic model: (a) Difference 
between exact and starting model, and between the 
inverted and the initial velocity model using the (b) 
conventional and (c) new FWI gradients. 
 

Limitations to current implementations: shallow 
water, reflectivity 
Although well established as part of the velocity model 
building flow, most successful applications of FWI to date 
have been limited to shallow water environments. This 
can be attributed to the fact that most implementations 
rely heavily on refracted energy or diving waves. Put this 
together with the offset limitations that exist in seismic 
data, stream and node alike, it follows naturally that 
shallow setting lend themselves easiest to being 
addressed by FWI as they are better sampled by 
refractions. A recent application of FWI to shallow water 
OBC was given by Liu et al. (2011) where accurate over 
burden velocities were obtained using refractions. This 
not only improved the shallow imaging, but also resolved 
depth ambiguities and miss-ties at reservoir level. A 
similar case using data from a dual-sensor towed 
streamer acquisition was presented by Zhou et al. (2014) 
where the authors show that modern streamer data 
contains refractions that produce good FWI velocity 
updates down to a depth of about 1/4 of the streamer 
length. In these scenarios, FWI relied mainly on recorded 
diving waves to resolve small-scale geologic features up 
to the deepest turning point. For deeper targets, FWI 
needs to rely on reflected energy to update the model. 
However, as we will see later, using the conventional FWI 
gradient computation in such situations is challenging 

unless the recorded reflections have extraordinary low-
frequency content. 
 
Beyond the depth limitations of refractions, a range of 
factors will influence how well FWI will resolve the 
velocities in the sub-surface. A key role is actually played 
by the rock formations over which the seismic was 
acquired; harder rocks (well-consolidated) tend to have 
good correlation between velocity and reflectivity, which is 
a common assumption in most FWI implementations. A 
typical FWI scheme uses an explicit relationship between 
density and velocity in the forward modeling step, such as 
Gardner’s relation, so there is an intrinsic assumption that 
change in reflectivity is also a change in velocity. 
However, in many softer rocks and unconsolidated 
sediments, the reflectivity is typically correlated to density 
changes and not velocity changes, as the latter is typically 
driven by changes in pressure, burial history etc. When 
applying FWI in basins with such characteristics, for 
example the Gulf of Mexico, great care must be take 
avoid that the FWI updates not only maps reflectivity into 
the velocity model. FWI might produce a “pretty” velocity 
field, but it is often an erroneous representation of what is 
actually happening in the subsurface. 
 
To move beyond the typical limitations outlined above, 
there has been a furry of activity in the recent years to 
reformulate FWI algorithms to include reflected energy for 
retrieving long-wavelength updates (e.g., Xu et al., 2013; 
Zhou et al., 2015, Alkhalifah, 2015). The fundamental 
idea is to compute a gradient in which undesired 
reflectivity (migration isochrones) are not present, such 
that indeed the full wavefield can by used in FWI to 
produce high resolution velocity models that correctly 
predicts refractions and reflections, a key step when using 
the models for depth migration and imaging. These 
improvements to the physics of FWI are nicely 
complemented by the introduction of new and robust 
regularizations schemes to stabilize the solution to the 
inversion step of FWI, i.e. improving the mathematics of 
the implementation. FWI is particularly challenged when 
facing large contrast geobodies such as salt bodies or 
volcanics. In such situations, the FWI solution often gets 
trapped in local minima unless the starting model is very 
accurate. Introduction of Total Variation (TV) 
regularization (Guo and de Hoop, 2013) have offered 
important insights into how such situations can be 
mitigated when applying FWI to large scale field datasets. 
 
In following pages, we will propose and review the 
concepts behind a new FWI gradient implementation that 
eliminates the migration isochrones that typically 
dominate FWI gradients in heterogeneous media. By 
separating the low from the high wavenumber 
components in the gradient, we can produce long 
wavelength velocity updates at depths greater than the 
penetration depth of the diving waves. Several data 
examples, both synthetic and field date, are used to 
highlight performance aspects of the method. Our new 
solutions are able to provide high resolution velocity 
models from records containing diving waves and 
reflections without the migration imprint provided by 
conventional FWI.  
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Results 

To illustrate the impact of the new FWI gradient we use a 
field data from deep-water Gulf of Mexico (DeSoto 
Canyon). The data were acquired with dual-sensor 
streamers and with a maximum offset of 12 km. The FWI 
full-power frequency band was 3-7 Hz. No particular 
mutes or event selection were used, therefore all 
recorded data were employed during the inversion. Figure 
4a shows an overlay of the initial velocity model on the 
seismic image. Figures 4b and 4c show the updates from 
the conventional and the new gradients respectively. The 
update from the conventional FWI is basically a mapping 
of the reflectivity or image into the velocity model, as I 
clear when compared to Figure 4a. When contrasted to 
the update from FWI with the new gradient, we can 
observe longer wavelength updates to the model to follow 
geology, but that do not constitute a simple mapping of 
reflectivity into the velocity field. To further evaluate the 
model derived from the new gradient, we performed 
Kirchhoff depth migration. We observed that the new FWI 
velocity model improved the flatness of the offset gathers 
as shown in Figures 4a and 4b. 

 
Figure 4. 2D dual sensor data example from deep water 
Gulf of Mexico: (a) initial velocity model overlaid by the 
seismic image, (b) conventional FWI model update, and 
(c) new FWI model update. 

As our second example, we show results for a wide-
azimuth dual-sensor dataset acquired in deep water Gulf 
of Mexico (GOM) with maximum inline and crossline 
offsets of 7km and 4.2km, respectively. Here we deployed 
the new gradient combined with TV regularization. 
Figures 5a and 5b show depth slices (1440m and 1620m) 
of the initial velocity model computed from reflection 
tomography. We perform FWI from this model using a 
frequency bandwidth of 3-5 Hz. For the extrapolation of 
the wavefields, we use the pseudo-analytical method 

assuming a TTI medium with variable density. Figures 5c 
and 5d show the corresponding slices for the inverted 
model. As observed, the new gradient allows updates to 
resolve small-scale lateral heterogeneities in the velocity 
model, provided mainly by the presence of diving waves. 
At the same time, there is no migration imprint in the 
updates produced by the specular reflections as observed 
in the vertical profiles for the starting and the inverted 
velocity models (Figures 6a and 6b).  

 
Figure 5. Results for the wide-azimuth Gulf of Mexico 
dual-sensor data example new FWI gradient and TV 
regularization. 

Conclusions 
We have described a new robust solution for recovering 
the long-wavelength features of a velocity model in 
gradient-based FWI. The method uses reflected and 
transmitted wave modes to recover high-resolution 
velocity models. The new FWI gradient enables reliable 
velocity updates deeper than the maximum penetration 
depth of diving waves, and reduces the FWI dependency 
on recording ultra-long offsets. Results from applying the 
new FWI gradient to field data show that we can combine 
both transmitted and reflected energy in a global FWI 
scheme to obtain high-resolution velocity models without 
imprint of the reflectivity on the velocity updates. 
 
We have also shown a new FWI regularization scheme 
that can overcome the limitations of the inversion in the 
presence of high contrast geobodies and cycle skipping. 
The implementation makes use of the split Bregman 
method making it efficient and accurate. The numerical 
experiments demonstrate that our algorithm can deal with 
the challenges of the presence of high contrast geobodies 
and cycle skipping.  
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Figure 6. Results for the wide-azimuth Gulf of Mexico 
dual-sensor data example using the dynamically weighted 
gradient: Vertical profiles for the (a) starting and the (b) 
inverted velocity model overlaid by the corresponding 
migrated stacked images. Horizontal distance is 18.6 km. 
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